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Abstract

A numerical investigation is conducted for a drop of viscous liquid, suspended in another liquid of the
same density and viscosity, and undergoing breakup due to simple shear. The computational domain is a
three-dimensional box, with spatial periodicity on the sides, and no-slip conditions at the top and bottom
walls. The full Navier–Stokes equations are solved, with a volume-of-fluid algorithm to track the interface,
a continuous surface force or surface stress formulation for modeling interfacial tension, and a semi-
implicit Stokes solver to treat order one Reynolds numbers.
We focus on trends for the drop fragment distribution when the flow strength is fixed and the mother

drop size is increased. Just above the critical capillary number, the drop evolves to a dumbbell, and breaks
according to the end-pinching mechanism. The daughter drops take almost all the mother drop volume; the
neck then spawns small moons of less than 1% the critical volume. When the mother drop size increases,
there is repeated end-pinching for the elongated neck region. The fragments consist of large satellites with
radii that are two to three times that of the effective neck radius, alternating with small moons. At higher
capillary numbers, much of the neck becomes cylindrical and breakup produces large satellites of roughly
monodispersed size and volumes in the range 10–17% of the critical volume, alternating with small moons.
The large mother drops result in daughters that scale with the critical size (and are always the largest

fragments produced), together with satellites that also scale with the critical size, and moons which make up
a small percentage of the volume. Such scalings allow to predict the fragment size distribution. Our results
are consistent with recent experimental observations for Stokes flow. The effect of inertia is a reduction in
the size of the fragments. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Drop breakup processes provide the mechanisms through which emulsions form, in devices
such as rotor–stator mixers (Utracki and Shi, 1992; Kennedy et al., 1994; Cristini et al., 1998;
Blawzdziewicz et al., 2001; Cristini et al., 2001a). Past studies have concerned Stokes flows;
however, commercial devices may operate under speeds where inertial effects enter. In this paper,
we focus on order one Reynolds numbers.
The study of fragmentation contributes to an understanding of the manner in which these

shearing devices produce droplets and the drop size distributions that result from the sequence of
events. Eventually, the flow equilibrates with drop sizes that depend on physical properties and
conditions of shear. At that stage, the drop size distribution affects the rheological properties of
the final emulsions. This work applies to dilute suspensions for which coalescence is negligible,
and equilibrium drop sizes are determined by breakup.
The evolution of a drop under simple shear is a three-dimensional problem, and requires a direct

numerical simulation with the full governing equations. Section 2 summarizes our numerical al-
gorithm, which is a finite difference scheme on a Cartesian grid. Drop deformation depends on the
viscosity ratio, capillary number and Reynolds number. The effects of these parameters up to the
formation of the first daughter drops are given in Guido and Villone (1998), Cristini (2000) and
Renardy and Cristini (2001a,b). We focus on the case of equal viscosities and densities for the drop
and matrix liquids, and investigate neck breakup by keeping the flow strength the same and in-
creasing the drop size. Our computational method also handles the case of different viscosities and
densities (Li and Renardy, 1999, 2000b; Li et al., 2000; Li and Renardy, 2000a).
When the viscosities, surface tension, and flow strength are fixed, the variation in mother drop

size yields the relationship

Re=Ca2 ¼ K;

where K ¼ qr2=ðl3 _ccÞ is a constant. Here, _cc is the imposed shear rate, Ca ¼ l _cca=r is the capillary
number, where l is the viscosity, a is the initial radius of the drop, and r is interfacial tension,
Re ¼ q _cca2=l is Reynolds number on the drop scale. We define a daughter capillary number and
Reynolds number,

CaD ¼ ðD=aÞCa; ReD ¼ ReðD2=a2Þ; ð1Þ

where D is the daughter drop radius (D3 < a3=2 from volume conservation). We shall find in
Section 3 that there is a self-similar behavior for the size of the fragments. The fragments all scale
with the critical condition, so that an important parameter is the critical capillary number Cac,
above which the drop breaks up; the corresponding critical radius is denoted ac. The maximum
stable drop size is attained at Cac.
Above the critical capillary number, the drop elongates, bulbs form at the ends, and these

produce the largest daughter drops. For Stokes flow, the volume of the first daughter drops
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becomes insensitive to the mother drop size when the capillary number increases (Cristini, 2000).
It saturates at a value (weakly dependent on the fluid viscosities) roughly equal to 70% of the
critical volume Vc ¼ ð4=3Þpa3c , corresponding to a daughter capillary number CaD � 0:9Cac. A
similar scaling holds with inertia, together with a reduction of the daughter drop size (Renardy
and Cristini, 2001b). As the Reynolds number increases, the flow within the drop becomes more
complicated, the dumbbell aligns at a higher angle of tilt before breakup, and this apparently
contributes to the reduction in size of the daughter drops.
When the first daughter drops pinch off, the neck is fully elongated. As the capillary number

increases, more volume goes into the neck, which becomes almost perfectly cylindrical for much of
its length. The ends spawn drops, and then the remaining central portion undergoes simultaneous
capillary breakup. This final stage is close to, but not exactly, an axisymmetric jet undergoing
capillary jet breakup, which is an energy minimization process that minimizes surface area by
breaking into drops. The wavelength of maximum growth rate for an inviscid jet (Rayleigh, 1900)
yields a drop radius of 1.87 times the jet radius. The numerical work of Tjahjadi et al. (1992) on
capillary breakup of a filament in a quiescent viscous fluid yields drops with twice the jet radius.
These works are similar to our situation, with one difference being that our filament is aligned at
an angle to the flow; the angle of tilt is higher at the larger Reynolds numbers. In Section 3, we
find the drops to be two to three times an ‘effective’ neck radius for capillary numbers where
repeated end-pinching occurs.

2. Numerical algorithm

2.1. Formulation

Our code SURFERþþ is composed of three parts: a second-order volume-of-fluid (VOF)
method to track the interface (Scardovelli and Zaleski, 1999; Gueyffier et al., 1999), a projection
method to solve the Navier–Stokes equations on the MAC grid, and finally, a continuum method
for modeling the interfacial tension. The details of the original code SURFER are given in Li
(1995) and Gueyffier et al. (1999), and new capabilities of SURFERþþ are described in Li et al.
(1998), Li and Renardy (1999) and Li et al. (2000): a summary is provided below.
The density q and the viscosity l of each fluid is a constant in each fluid. A concentration (or

color) function C is used to track the interface:

CðxÞ ¼ 1 fluid 1;
0 fluid 2:

�

This concentration function is transported by the velocity field u. The fluids are incompressible:
r � u ¼ 0, and governed by the Navier–Stokes equation:

q
ou

ot

�
þ u � ru

�
¼ �rp þr � lSþ F;

where S is the viscous stress tensor. In the VOF method, the interfacial tension condition across
the interface is expressed as a body force over the mesh cells which contain the interface. We
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implement the continuous surface stress (CSS) formulation (Lafaurie et al., 1994), in which Fs ¼
r � T ¼ rdSjnS and T ¼ ð1� nS 	 nSÞrdS½ �. No mollification is used on the color function.
The temporal discretization is performed with Chorin’s projection method, which decouples the

pressure equation. The semi-implicit Stokes solver described in Li and Renardy (1999), Li et al.
(1998) and Li et al. (2000) is used. The spatial discretization is a Cartesian mesh of rectangular cells.
It is a finite difference mesh known as the MAC grid. The density and viscosity for each cell are
given by q ¼ Cq1 þ ð1� CÞq2 and l ¼ Cl1 þ ð1� CÞl2, where subscripts refer to fluids 1 and 2.
A piecewise linear interface calculation (PLIC) method is used to reconstruct the interface

position. The approximate normal n to the interface in each cell is equal to the discrete gradient of
the volume fraction field: n ¼ rhC=jrhCj: The final step of the VOF method is to evolve the
volume fraction field C. At the nth timestep, the interface is reconstructed, the velocity at the
interface is interpolated linearly and then the new interface position for the ðnþ 1Þth timestep is
calculated via a Lagrangian method: xnþ1 ¼ xn þ uðDtÞ. The code is parallelized; data on the
scalability and timings are given in Renardy and Li (2000).

2.2. Implementation of symmetries in SURFER++

The simulations we present have anti-symmetry in the x-direction and the symmetry in the
y-direction. These symmetries are observed experimentally in Guido and Villone (1998), Guido
and Greco (2001), Zhao and Goveas (2001) and Mighri and Huneault (2001). We have imple-
mented these conditions; the difficulty in implementation originates from the MAC staggered
mesh, for which we must distinguish three different cases for the velocity components u, v and w.
This implementation results in a fourfold reduction of machine memory and a reduction of CPU
time of at least four times.
For the drop deformation and break-up in simple shear flow, we used periodic boundary

conditions in both x- and y-directions and the no-slip condition at the top and bottom walls. We
find that at our flow conditions, the solution displays symmetries. As shown in Fig. 1(a), suppose
the drop is initially at the center of the computational box; by using the anti-symmetrical con-
dition in x and symmetrical condition in y, we reduce the domain for the computation to one
quarter of the original domain. This is illustrated in Fig. 1(b). We can therefore use one quarter of

Fig. 1. (a) Full domain of computation. (b) Domain of computation by using symmetries.
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memory of the previous computation. Moreover, we also reduce at least four time the CPU, as the
CPU increases more quickly than a linear dependance on the mesh size.
Implementation of the symmetry in the y-direction is trivial. Here, we show only how to im-

plement the anti-symmetrical condition in the x-direction. Due to the staggered mesh, the vari-
ables are defined on different locations. We therefore discuss three different cases. We begin with
the the constant variables: volume fraction C, pressure p and velocity component v. Consider an
x–z plane: these variables are defined at the centers of the cells, as shown in Fig. 2. The physical
domain contains the cells from (2,2) to ðnx � 1; nz � 1Þ (represented by solid lines). The cells on the
border (represented by dashed lines) are ghost cells. They are useful for implementing boundary
conditions. Therefore, the declarations for these variables in a Fortran program are ccðnx; nzÞ,
pðnx; nzÞ and vðnx; nzÞ. The two centers of anti-symmetry are at the centers of the right and left
borders of the physical domain (represented by two large black circles). Whenever we need to
impose the anti-symmetrical condition in the explicit scheme, we just copy the appropriate values
to the ghost cells: see Fig. 2, for instance, ccð1; kÞ ¼ ccð2; nz � k þ 1Þ and ccðnx; kÞ ¼ ccðnx � 1;
nz � k þ 1Þ. On the other hand, there is a complication in the implementation of the semi-implicit
scheme for v. As shown in Fig. 2, the row k and the row nz � k þ 1 form a periodic chain and must
be solved together. The algorithm for solving this periodic chain is identical to what is already in
SURFERþþ, but it has been rewritten in a more compact and readable form.
The velocity component u is defined at the centers of the vertical borders of each cell. In the

physical domain, it is defined from column 2 to the column nx. As shown in Fig. 3, we require a
column of ghost values for uðnx; Þ. Therefore, the declaration for u is different from the other
variables: it is uðnx þ 1; nzÞ. For the explicit scheme, we impose the boundary condition uð1; kÞ ¼
�uð3; nz � k þ 1Þ and uðnx þ 1; kÞ ¼ �uðnx � 1; nz � k þ 1Þ. The complication for implementing
the semi-implicit scheme is as mentioned above.
The same idea applies to the velocity component w (see Fig. 4): its declaration is wðnx; nzÞ. We

impose the boundary condition wð1; kÞ ¼ �wð2; nz � k þ 2Þ and wðnx; kÞ ¼ �wðnx � 1; nz � k þ 2Þ.
We also follow the above procedure to implement the semi-implicit scheme.

Fig. 2. Symmetry condition for constant variables: volume fraction C, pressure p and velocity component v.
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2.3. Computational accuracy and efficiency

An investigation of the effect of the computational domain size, timestep and mesh was con-
ducted in Renardy and Cristini (2001b) with regard to the volume of the first daughter drops.
There, the computational box Lx � 0:5� 1, with initial drop radius a ¼ 0:125, timesteps Dt ¼
10�3 _cc�1 was sufficient. Note that in Renardy and Cristini (2001b), the domain was doubled in both
the y- and z-directions, and timesteps were halved, with little effect on the volumes of the first
daughter drops. The mesh is Nx � Ny � Nz and each discretized cell size is

Dx ¼ Lx=Nx; Dy ¼ Ly=Ny ; Dz ¼ Lz=Nz; ð2Þ

where Ly ¼ 0:5, Lz ¼ 1. For Lx ¼ 2:5, and mesh Dx ¼ 1=96, 1000 timesteps require 1.5 h with 64
processors on the Origin 2000 at NCSA. For Lx ¼ 4 and mesh Dx ¼ 1=128, 1000 timesteps require

Fig. 4. Implementation of anti-symmetric condition for velocity component w.

Fig. 3. Implementation of anti-symmetric condition for velocity component u.
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13–14.5 h with eight processors on Origin 2200, or 10 h with 32 processors on the NCSA Origin
2000.

2.3.1. Stationary shapes
The results of our code are compared with those of the boundary integral code of Cristini et al.

(1998, 2001a) for Stokes flow at Ca ¼ 0:35. Their steady-state solution is shown in Fig. 5(a). Our
code is run at finite Reynolds numbers, and an extrapolation is expected to give the Stokes flow
result. At Ca ¼ 0:35, the critical Reynolds number is between 0.2 and 0.4.
We compute the steady-state solution by advecting the interface for 20 timesteps for every

velocity field calculation. This is repeated until steady-state is reached. This method gives the
steady-state solution by economizing the CPU time. In Tables 1–4, the steady-state values for L=a
are shown for various computational conditions. Table 1 shows that hydrodynamic interactions
with neighboring drops due to spatial periodicity in the y-direction enhances drop deformation.
Table 2 shows refinements in timesteps and we will use _ccDt ¼ 10�4 for Table 3.
In Table 3, the first entry is for the smallest box with respect to the drop radius. When the walls

are taken apart and the box widened in the other directions, L=a lowers in value toward the 1.7171
value of the boundary integral code. Next, the Reynolds number is reduced by half. Linear ex-
trapolation in the Reynolds number gives L=a ¼ 1:75 for Stokes flow, which is 2% different from
that of the boundary integral code. SURFERþþ is second-order in space. Thus, the errors are
proportional to ðDxÞ2. We use the third and fourth rows of the table to calculate the difference
E1 ¼ 1:79� 1:72 ¼ C1ða=8Þ2 and E2 ¼ 1:766� 1:717 ¼ C2ð3a=32Þ2. We find that C1 and C2 are
approximately 5. To reduce the difference with the boundary integral code to 0.5% would require
a mesh of a=22. The calculation in the last row of the table already requires 35–40 h CPU on eight
processors.
A comparison of the continuous surface force (CSF) algorithm with the continuous surface

stress (CSS) algorithm with smoothing and without smoothing is done for the last row of Table 3.
(For details of the CSF and CSS algorithms, we refer the reader to Renardy et al. (2001). Note

Fig. 5. (a) Steady-state L=a ¼ 1:7171. (b) Computational box 12a� 12a� 12a, a ¼ 0:08 _33, mesh Dx ¼ Dy ¼ Dz ¼ 3a=32,
timestep _ccDt ¼ 10�4, Re ¼ 0:03125. Steady-state L=a ¼ 1:760.
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that CSF requires smoothing in order to be numerically stable, while CSS does not.) The com-
putational box is 12a� 12a� 12a, the mesh is 3a=32, Re ¼ 0:03125, timesteps are refined to
Dt ¼ 0:5� 10�4. The smoothed CSS result settles to L=a ¼ 1:795, and the unsmoothed to
L=a ¼ 1:787 (see Table 4). We conclude that if we have sufficient spatial and temporal resolution,
no smoothing is preferred. The transient evolution calculated with CSS with no smoothing is
shown in Fig. 6 at Re ¼ 0:03125, for the ratio of the half-length to radius, vs capillary time tca. For

Table 3

Steady-state drop data computed with CSF

Computational box Mesh Dx Dt Re L=a

4a� 4a� 4a a=8 10�4 0.0625 1.87

8a� 8a� 8a a=8 10�4 0.0625 1.80

12a� 12a� 12a a=8 10�4 0.0625 1.79

12a� 12a� 12a 3a=32 10�4 0.0625 1.766

12a� 12a� 12a 3a=32 10�4 0.03125 1.760

Ca ¼ 0:35. Variation with spatial refinement and Reynolds number.

Table 4

Steady-state drop data computed with CSS

Computational box Mesh Dx Re L=a

8a� 8a� 8a a=16 0.0625 1.80 mollified

8a� 8a� 8a a=20 0.03125 1.81 not mollified

12a� 12a� 12a 3a=32 0.03125 1.80 mollified

12a� 12a� 12a 3a=32 0.03125 1.787 not mollified

12a� 12a� 12a 3a=32 0.015625 1.80 mollified

Ca ¼ 0:35, Dt ¼ 10�4.

Table 2

Steady-state drop data computed with CSF

Computational box Mesh Dx Dt Re L=a

8a� 4a� 8a a=8 10�3 0.0625 1.94

8a� 4a� 8a a=8 10�4 0.0625 1.87

8a� 4a� 8a a=8 0:5� 10�4 0.0625 1.86

Ca ¼ 0:35. Variation with timesteps.

Table 1

Steady-state drop data computed with CSF

Computational box Mesh Dx Dt Re L=a

8a� 4a� 8a a=8 10�3 0.0625 1.935

8a� 8a� 8a a=8 10�3 0.0625 1.90

Ca ¼ 0:35. Variation with depth in y-direction.
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shear rate 1, 1 unit of capillary time is equivalent to 0.35 s. Each capillary time requires 3 h 10 min
of CPU on eight processors of Origin 2200. The simulation was stopped at 18 s, and compared
with the result from the boundary integral method of Cristini (2000). The effect of inertia, hy-
drodynamic interactions with neighboring drops, and finite distance to walls, in addition to spatial
discretization, contribute to the difference with the boundary integral method.

2.3.2. Breakup fragments
The aim of this paper is to extend the results of Renardy and Cristini (2001b) which show that

the first daughter drops scale with the critical volume. We begin with the study of Re ¼ 12;
Ca ¼ 0:175, and compare the CSF and CSS algorithms; the results are shown in Fig. 7 for a rough
mesh. This compares the drop evolution at 18, 22, 24 s, with timesteps Dt ¼ 10�3 s. The CSF
algorithm is used in (a) with spatial mesh 128� 32� 64 on a computational domain
2:0� 0:5� 1:0. In (b), the CSS algorithm is used with spatial mesh 160� 32� 64 on a compu-
tational domain 2:5� 0:5� 1:0. In comparison, the CSF drop has already broken at 18 s. After
breakup, the ratios of daughter to mother radii for the CSF calculation are, from the first
daughter drop toward the center drop, D=a ¼ 0:73, three moons, 0.37, moon, then center drop
0.43. We shall refer to drops with

D=a < 0:3 ð3Þ
as moons. For the CSS result, the central drop evolves to steady state, and we have D=a ¼ 0:71,
two very close moons, 0.37, moon, center drop 0.49. The smoothing evidently speeds up the
breakup, and yields a jaggedness in the final pinch-offs which is less pronounced in the case when
smoothing is not used. Table 5 shows the daughter capillary numbers and Reynolds numbers. The
first daughters differ by 3% in D=a which is equivalent to 9% in the ratio of daughter to critical
volume,

VD=Vc ¼
D
a

� �
Ca
Cac

� �� �3
: ð4Þ

With mesh refinement, the values for CSF and CSS approach each other. For example, the CSF
with 192� 32� 128 on a computational domain 3:0� 0:5� 1:0 gives D=a ¼ 0:732, the CSS with

Fig. 6. L denotes the half-length of drop. The upper curve shows the transient to 18 s using the CSS algorithm with no

mollification, Re ¼ 0:03125, Ca ¼ 0:35, computational box 12a� 12a� 12a, mesh Dx ¼ Dy ¼ Dz ¼ 3a=32, timestep
Dt ¼ 10�4, Re ¼ 0:03125. The lower curve is from the boundary integral code of Cristini (2000).
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mollification on 480� 96� 192 on a computational domain 2:5� 0:5� 1 gives 0.726, and
without mollification, 0.718. Thus, the main reason for the difference in Fig. 6 and Table 5 is the
presence of smoothing.
During the course of the computation, the neighboring first daughter drops enter into the

computational domain because of spatial periodicity in the x-direction, and undergo interactions
with other satellite drops as the breakup progresses. In order to prevent this interaction, drops will
be erased as they exit the left and right hand boundaries. Fig. 7(c) shows the effect of erasure on
the simulations of (a) and (b). In (c), we can see parts of the first daughters erased at 18 s. The
drop distribution is also shown in Table 5. The effect of erasure is less than 1% on the D=a for the
first daughters, but is more on the satellite drops. Hydrodynamic interactions among the drops at

Fig. 7. Re ¼ 12;Ca ¼ 0:175 ¼ 1:14Cac, sequence of evolution at t ¼ 18, 22, 24 s. (a) CSF, (b) CSS with no mollification.
In (a), at t ¼ 22 s, the first daughters have exited the domain and merged with the first daughters of the next mother
drop because of spatial periodicity in the x-direction. (c) Computational domain 2:0� 0:5� 1:0. Drops are erased as
they exit the domain.

Table 5

Drop distribution computed with the CSF algorithm and CSS algorithm with no smoothing

Drop CSF CSS CSS erased

D=a CaD ReD D=a CaD ReD D=a CaD ReD

1 0.73 0.13 6.47 0.71 0.13 6.11 0.71 0.13 6.12

2 0.37 0.07 1.64 0.37 0.07 1.67 0.36 0.06 1.51

Center 3 0.43 0.08 2.18 0.49 0.09 2.90 0.55 0.10 3.63

4 0.37 0.07 1.64 0.37 0.07 1.67 0.36 0.06 1.51

5 0.73 0.13 6.47 0.71 0.13 6.11 0.71 0.13 6.12

Re ¼ 12, Ca=Cac ¼ 1:14. Ratio of daughter radius to mother radius D=a, daughter capillary number CaD, and daughter
Reynolds number. Mesh Dx ¼ Dy ¼ Dz ¼ 1=64. Total number of main drops, excluding moons, is 5.

1134 Y. Renardy et al. / International Journal of Multiphase Flow 28 (2002) 1125–1147



close proximity in (a) and (b) have been decreased in (c). In conclusion, the CSS algorithm with no
mollification will be used in Section 3. Moreover, we shall erase the drops as they exit the com-
putational domain in order to optimize computational effort and decrease hydrodynamic inter-
actions with spatially periodic neighboring drops.
Next, we turn our attention to the temporal refinement. Fig. 8 shows the breakup sequence for

two spatial refinements, conducted with the CSS algorithm with no mollification, and with drops
erased as they exit the domain. These are snapshots taken from the top of the computational
domain. These simulations are at Dt ¼ 10�3. These were repeated at one tenth of this timestep and
the results are identical. Thus, Dt ¼ 10�3 will be used.
Finally, we examine the spatial refinement. Fig. 8 shows that the time to breakup of the first

daughters increases with spatial refinement. Secondly, the small satellites which come off of the
neck just after the first daughters pinch off are on the scale of the mesh. Thirdly, the 1=96 mesh
results shown in (b) are not physically acceptable because the center drops split without a moon in
between. Past results on breakup have always resulted in small moons between larger drops.
Fourthly, the number of main drops, disregarding small moons, is 5 for the 1=64 mesh and 6 for
the 1=96 mesh. The drop data for the 1=64 case is the last columns of Table 5. The 1=96 case gives
D=a ¼ 0.72 for the first daughters, then toward the center, moon, 0.34, 0.43. Clearly, more spatial
refinement is required.

Fig. 8. Re ¼ 12, Ca ¼ 0:175 ¼ 1:14Cac, top view. This is the breakup sequence for the parameters of Fig. 2(b) of
Renardy and Cristini (2001b) for computational domains: (a) 2� 0:5� 1, mesh Dx ¼ Dy ¼ Dz ¼ 1=64; (b)
2:5� 0:5� 1, mesh 1=96. (a) t ¼ 19 (drop 1 detached), t ¼ 22 (moon detached), 24 (drop 2 detached, center evolves to
dumbbell), 26 s (center retracts to single drop). (b) t ¼ 20 (drop 1 detached), 22 (3 moons detached), 25 (3 moons, drop
2, moon, detached), 27 s (center drops detached).
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Fig. 9 shows results for 1=128, 1=160, and 1=192 meshes. The drop data are given in Table 6.
First, the singularity which arises after the first daughters pinch off affects the resolution of the
subsequent small drops (Papageorgiou, 1995; Eggers, 1995; Lister and Stone, 1998). For example,
for the 1=192 mesh, there are a couple of tiny moons. In Fig. 9(c), the last picture at t ¼ 29 s shows
the largest of these moons, drop 2, moon with D=a ¼ 0:09; CaD ¼ 0:016; ReD ¼ 0:09, and center
drop 3. The central three-drop structure in this picture is the most realistic one, being the last of
the end-pinching sequence, evolving into the familiar dumbbell ends with more volume in the
dumbells than in the neck. Secondly, as the mesh is refined, the time to breakup for the final
satellites lengthens with better resolution of the neck region. The 1=192 case takes 33 h CPU on
eight processors of Origin 2200 per 1000 timesteps (1 s), totalling 40 days CPU up to the stage
shown in the figure. When the full 3D code is re-structured to take into account the symmetry in
the y-direction and anti-symmetry in the x–z plane, then 1 s takes approximately 11 h CPU per 1 s.
The least spatially refined case already captures the size of the first daughter drops, which are

54% of the critical drop volume, together with the gross features of the breakup. Table 6 shows
that the volumes of the neck drops are 10–15% of the critical drop volume. The convergence for
the smaller drops with D=a < 0:3 requires a much finer mesh. In particular, the moons which are
spawned from the neck immediately after the first daughter drops detach are extremely small. On
the rough mesh, they are therefore resolved to yield a larger volume, giving less volume to the
main drops. Comparing the 1=160 and 1=192 meshes, we see that the resolution of the main drops

Fig. 9. Re ¼ 12, Ca ¼ 0:175 ¼ 1:14Cac, top view. This is the breakup sequence for the parameters of Fig. 2(b) of
Renardy and Cristini (2001b) for computational domain 2:5� 0:5� 1. (a) Mesh 1=128. t ¼ 20 (drop 1 detached), 23 (3
moons), 26 (drop 2), 27 s. (b) Mesh 1=160. t ¼ 20 (drop 1 detached), 23, 26, 27 s. (c) Mesh 1=192. t ¼ 20, 23, 28, 29 s.

Table 6

Trends with spatial refinement

Drop D=a CaD ReD

Dx 1=64 1=128 1=160 1=192 1=64 1=128 1=160 1=192 1=64 1=128 1=160 1=192

1 0.71 0.72 0.72 0.72 0.13 0.13 0.13 0.13 6.10 6.18 6.19 6.19

2 0.36 0.39 0.45 0.46 0.06 0.07 0.08 0.08 1.54 1.84 2.44 2.58

3 0.55 0.47 0.40 0.35 0.10 0.08 0.07 0.06 3.62 2.63 1.89 1.50

4 0.36 0.39 0.45 0.46 0.06 0.07 0.08 0.08 1.54 1.84 2.44 2.58

5 0.71 0.72 0.72 0.72 0.13 0.13 0.13 0.13 6.10 6.18 6.19 6.19

Re ¼ 12, Ca=Cac ¼ 1:14. Mesh is given by Dx ¼ Dy ¼ Dz in each direction. Drop 3 is the center drop.
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from the neck is achieved at the 1/160 case. At a higher capillary number, more of the volume goes
into the neck and its breakup will approach that of a filament. In this case, sufficient refinement is
not feasible without the use of an adaptive grid. However, the results in Table 6 indicate that the
values for drops 2 and 3 corresponding to resolutions Dx ¼ 1=128; 1=160; 1=192 roughly converge
as ðDxÞ2 to the values 0.54 and 0.25 respectively.
The case Re ¼ 15, Ca ¼ 0:196 ¼ 1:27Cac is shown in Figs. 10 and 11. As in the previous set of

simulations, the first daughter drops are captured accurately at a rough mesh: for Dx ¼ Dy ¼
Dz ¼ 1=64, 1=96, 1=128, the daughter drop radius vs mother drop radius is D=a ¼ 0:64, which
yields 54% of the critical volume. Table 7 shows drop data for different meshes, for the main drops
disregarding small moons with D=a < 0:3. The volumes of the main neck fragments again lie
between 10% and 17% of the critical drop volume. Each main drop is typically followed by one or
more small drops, or ‘moons’. In the case of a rough mesh, a moon tends to take up more of the
volume fraction than it would on a finer mesh, leaving less for the main drops. This explains the
reduced number of main drops on the rough mesh. For the meshes, the total number of main
drops is 7, 10, 11, 8, respectively. For the coarser meshes, 5–6 central drops break almost si-
multaneously, giving the appearance of capillary breakup of a jet. However, the finest mesh shows

Fig. 10. Re ¼ 15, Ca ¼ 0:196 ¼ 1:27Cac, top view of computational domain 3� 0:5� 1. Breakup sequence for (a)
Dx ¼ 1=64 ¼ Dy ¼ Dz. t ¼ 20 (drop 1 detached), 21, 24 (small moons), 28. (b) Dx ¼ 1=96 ¼ Dy ¼ Dz. t ¼ 20, 21 (drop 1
detached), 24 (drop 2 detached), 28, 31. (c) Dx ¼ 1=128 ¼ Dy ¼ Dz. t ¼ 20, 21 (drop 1 has detached), 24 (small moons
detach), 28 (drop 2 detached), 31 (drop 3 detached), 33 (drops 4, 5 and the center drop 6 detach). See Table 7.
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this to be repeated end-pinching of individual drops, in agreement with experimental observations
of Marks (1998), that capillary breakup is observed for Ca=Cac over 2. Comparing Figs. 10(b) and
11, the simulations are similar up to t ¼ 28 s, and at this stage, some differences in the ends of the
neck are observed. Based on the mesh refinement results of Fig. 9, we expect the 1=160 mesh result
for the main neck fragments to be close to the correct sizes. This full-3D simulation required 7.5 h
CPU on 64 processors per 1 s, totalling 10.6 days CPU for the results shown in the figure.

3. Breakup with inertial effects

In Renardy and Cristini (2001b), we have investigated the size of the first daughter drops when
the mother drop size is increased, and shown that they scale with the critical drop size. In this

Fig. 11. Re ¼ 15;Ca ¼ 0:196 ¼ 1:27Cac, top view of computational domain 3� 0:5� 1. Breakup sequence for
Dx ¼ 1=160 ¼ Dy ¼ Dz. t ¼ 20, 21, 24, 28, 31, 34 s. See Table 7.
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section, we extend the case Ca2 ¼ 391Re treated in Renardy and Cristini (2001b) to the full
breakup simulation. Fig. 12 shows the data on mother drops (o) for which we present numerical
results. The first daughter drops () approach 54% of the critical volume (radius D � 0:81ac) as

Table 7

Drop distribution

Drop D=a CaD ReD

Dx 1=64 1=96 1=128 1=160 1=64 1=96 1=128 1=160 1=64 1=96 1=128 1=160

1 0.64 0.64 0.64 0.64 0.13 0.13 0.13 0.13 6.1 6.2 6.2 6.3

2 0.34 0.35 0.38 0.43 0.07 0.07 0.07 0.08 1.7 1.9 2.1 2.8

3 – 0.44 0.40 0.39 – 0.09 0.08 0.08 – 2.9 2.4 2.3

4 0.45 0.36 0.35 – 0.09 0.07 0.07 – 3.0 1.9 1.8 –

5 0.40 0.36 0.33 0.44 0.08 0.07 0.07 0.09 2.4 1.9 1.7 2.9

6 0.40 – 0.33 – 0.08 – 0.06 – 2.4 – 1.6 –

7 0.40 0.36 0.33 0.44 0.08 0.07 0.07 0.09 2.4 1.9 1.7 2.9

8 0.45 0.36 0.35 – 0.09 0.07 0.07 – 3.0 1.9 1.8 –

9 – 0.44 0.40 0.39 – 0.09 0.08 0.08 – 2.9 2.4 2.3

10 0.34 0.35 0.38 0.43 0.07 0.07 0.07 0.08 1.7 1.9 2.1 2.8

11 0.64 0.64 0.64 0.64 0.13 0.13 0.13 0.13 6.1 6.2 6.2 6.3

Re ¼ 15, Ca ¼ 0:196 ¼ 1:27Cac. 3� 0:5� 1, mesh Dx ¼ Dy ¼ Dz.

Fig. 12. Re vs Ca for the critical curve (solid); Re ¼ K:Ca2 (dashed), K ¼ 391, follows an experiment with fluid
properties and flow strength fixed, while the radius of mother drop varies. Circles represent mother drop data. Asterisks

denote first daughter drop data ReD vs CaD. Triangles denote the rest of the fragments. Small fragments at the level of
the discretized mesh are not included.
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the mother drop size increases. Compared with Stokes flow (roughly 70% of volume, corre-
sponding to D � 0:9ac), the effect of the additional parameter Re is that the drops are smaller with
inertia. The fragments from the neck (D) lie between 10% and 17% of the critical volume (radius
� 0:5ac, to be contrasted to the value 0.64 ac found by Cristini (2000) from experiments for drop-
to-matrix viscosity ratio 0.1). The data are obtained from the three larger mother drops. Smaller
fragments with D=a < 0:3 occur in each numerical simulation and are not included in the plot
because their volume fraction is small. These results indicate that the size of the large satellites
produced from breakup events in the slender neck also scales at large capillary numbers with the
critical size. This is supported by the simulations presented in the following of this section.
Fig. 13 shows the velocity vector plot around a first daughter at t ¼ 20 s, showing that it is

carried by the shear away from the neck. The neck is aligned at a slight angle to the imposed shear
flow. The vectors are plotted at every four nodes. The next figure at a subsequent time shows that
there is a retraction at the neck while the next drop is formed. The vectors here are plotted at every
node.
The PacMan effect is sometimes observed during breakup: the drops are aligned at an angle to

the imposed shear flow, so that they have different velocities and some of the drops spawned after

Fig. 13. Re ¼ 12, Ca ¼ 0:175 ¼ 1:14Cac, side view for x–z plane at y ¼ 0:25, computational domain 2:5� 0:5� 1, mesh
Dx ¼ Dy ¼ Dz ¼ 1=128, t ¼ 20 s, the neck is aligned at an angle to the imposed shear flow. Following this, the neck
retracts to pinch-off.
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the first daughters are seen to catch up to smaller drops and eat them. Fig. 14 shows drops ap-
proaching each other for t ¼ 23, 27s, at Re ¼ 12.
Figs. 15 and 16 show the breakup simulations as the mother drop size increases. The neck

contributes an increased volume fraction for roughly 0:4 < CaD=Cac < 0:6. These drops are
slightly smaller than for Stokes flow, for which experimental data in Section 4.6 of Marks (1998)
put these in the range 0:5 < CaD=Cac < 0:75. These Stokes flow results and the present work
conclude that there are tiny drops that contribute relatively little volume fraction for CaD=Cac <
0:4.
At the instant when the first daughter drops pinch off, the neck is elongated to roughly its

maximum length, and cylindrical in a central region, tapering off to pencil tips toward the ends.
Table 8 tabulates the ‘effective’ capillary number for the cylindrical neck Can. This is calculated
from the length L of the neck (projected onto the x-axis) just after the first daughter drops detach,
and the volume in the neck. An effective radius rn is calculated for this, assuming the neck is
cylindrical, and of length L, or pr2nL ¼ ð4=3Þpa3 � 2ð4=3ÞpD3, so that

rn ¼
4a3ð1� 2ðD=aÞ3Þ

3L

" #1=2
; ð5Þ

where D is the first daughter drop radius, and

Can ¼ Caðrn=aÞ: ð6Þ

Fig. 14. Re ¼ 12, Ca ¼ 0:175 ¼ 1:14Cac, velocity vector plots for side-view in the x–z plane through the center y ¼ 0:25,
computational domain 2:5� 0:5� 1. Mesh Dx ¼ Dy ¼ Dz ¼ 1=128, t ¼ 23, 27 s.
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At Re ¼ 15 (cf. Table 7), the drops which result from the neck have capillary numbers CaDneck
between 0.08 and 0.09, and if CaDneck ¼ FCan, then F ranges from 2.4 to 2.8. If the breakup were a
capillary breakup of a viscous jet in a quiescent liquid as considered in Tjahjadi et al. (1992), then

CaDneck ¼ FCan; F ¼ 2: ð7Þ

Here, however, we have repeated end-pinching, which produces larger drops.

Fig. 15. (a) Re ¼ 12, Ca ¼ 0:175 ¼ 1:14Cac. Computational domain 2:5� 0:5� 1. Mesh 1/192, t ¼ 20, 23, 28, 29 s. (b)
Re ¼ 15, Ca ¼ 0:196 ¼ 1:27Cac. Computational domain 3� 0:5� 1. Mesh Dx ¼ Dy ¼ Dz ¼ 1=160, t ¼ 21, 24, 28, 31,
34. (c) Re ¼ 20, Ca ¼ 0:226 ¼ 1:47Cac. Computational domain 4� 0:5� 1. Mesh Dx ¼ Dy ¼ Dz ¼ 1=128, t¼ 22 (drop
1 has detached), 26 (moon CaD ¼ 0:03;ReD ¼ 0:3, drop 2, moon CaD ¼ 0:02;ReD ¼ 0:15, detach), 29 (drop 3 detached
at 28 s), 33 (drop 4), 34 (the rest of the drops detach), 35 s.

Fig. 16. Re ¼ 37, Ca ¼ 0:308 ¼ 2Cac. Computational domain 6� 0:5� 1. Mesh Dx ¼ Dy ¼ Dz ¼ 1=128, t ¼ 23 s.
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For Re ¼ 20, Ca=Cac ¼ 1:47, Fig. 15(c) shows the evolution computed with a 1/128 mesh. We
expect this type of simultaneous breakup of the neck fragments at much higher capillary numbers.
Based on mesh refinement studies mentioned in Section 2, drops should end-pinch, resulting in
fewer and larger drops. The numerical results obtained with a computational box of 4� 0:5� 1
and 512� 64� 128 grid yield 19 drops plus moons which account for a small percent of the
mother drop volume. The values of CaD are: 0.13, 0.08, 0.08, 13 drops at 0.07, 0.08, 0.08, 0.13. The
values of VD=Vc are 0.54 for the first daughters, and the rest lie between 0.10 and 0.16, with many
in the lower end. The moons have values of 0.04 or less. There are moons between every main
drop. Each 1 s shown in Fig. 15(c) requires 13–14 CPU h on Origin 2200 with eight processors.
Fig. 16 shows the simulation up to 23 s at twice the critical capillary number: Re ¼ 37;Ca ¼ 2Cac.
The neck is perfectly cylindrical for much of its length, and we would expect Eq. (7) to become
more relevant. The evolution of a thread of viscous fluid suspended in vacuum, subject to cap-
illary breakup, is analyzed by Renardy (1994), Papageorgiou (1995), Brenner et al. (1996) and
Eggers (1997); the local asymptotic theory predicts a constant rate of decay of the minimum
thread radius vs time. This constant is retrieved in Section 5 of Kwak et al. (2001) with a simu-
lation based on the boundary integral method. On the other hand, the analysis of surface-tension
driven breakup of a viscous thread in a viscous medium does not yield a specific constant (Lister
and Stone, 1998) for comparison with simulations.
Fig. 17 shows the volume fraction relative to the mother drop volume, VD=Va ¼ ðCaD=CacÞ3=

ðCaa=CacÞ3, for each CaD=Cac. There are always tiny drops between the main fragments which
have not been included in the graphs. The trend, as the mother drop size increases, is the growth in
drops of size roughly half that of the mother drop. The first daughter drops remain as the largest
drops, at roughly 0.8 of the mother drop volume, and there are no other drops of that magnitude
in the simulations reported.
What is the scaling for the drops as the capillary number increases along the parabola shown in

Fig. 12? The fate of the fragments is determined by the first daughter drops. These scale with the
critical volume (cf. Table 8). The neck radius determines the size of the subsequent drops because
they are the same order of magnitude. As the capillary number increases to infinity, the ratio of
daughter drop radii to mother drop radius decreases to zero, D=a ! 0 and Eq. (5) shows that the
effective neck radius satisfies

rn � L�1=2a3=2: ð8Þ

The capillary numbers covered in Table 8 are not sufficiently large for this scaling to apply,
because the ratio D=a is not negligible. Therefore, in our regime, rn is influenced by the two

Table 8

Capillary numbers for the mother Ca relative to critical Cac, the first daughter drop CaD1, the effective neck radius rn,
the neck Can relative to critical Cac, neck length L just after the first daughters pinch off, total length LT just before
pinch-off, for the finest meshes presented in Section 3

Ca=Cac CaD1=Cac L rn Can=Cac LT

1.14 0.81 1.57 0.021 0.19 2.18 (20 s)

1.27 0.82 2.40 0.023 0.23 2.79 (20 s)

1.47 0.81 3.18 0.023 0.27 3.54 (21 s)
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competing effects in Eq. (5): L increases with increasing Ca, and the numerator 1� 2ðD=aÞ3 also
increases.
For large capillary numbers, the effect of surface tension is initially small and the drop stretches

following the simple shear flow, elongates, until eventually, the cross-section of the drop evolves
to a circular shape, length scales are reached at which surface tension becomes important, and
pinching begins. This pinching begins when an effective radius is approximately the critical radius:

re � rc; rc ¼ a
Cac
Ca

: ð9Þ

This effective radius might be interpreted either as the effective neck radius for an extremely
elongated case, but more appropriately for our simulations, as an average radius for a less

Fig. 17. Drop size distribution: (a) Re ¼ 12;Ca ¼ 0:14Cac, 2:5� 0:5� 1, mesh Dx ¼ 1=192 ¼ Dy ¼ Dz; (b) Re ¼ 15;
Ca ¼ 1:27Cac, 3� 0:5� 1, mesh Dx ¼ 1=160 ¼ Dy ¼ Dz; (c) Re ¼ 20;Ca ¼ 1:47Cac, 4� 0:5� 1, mesh Dx ¼ 1=128 ¼
Dy ¼ Dz. This excludes moons which have VD=Va � 0:002. There are moons between every main drop and account for a
few percentage of the mother drop size.
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elongated shape, where pr2eLT equals the original drop volume, with LT being the total length.
When pinch-off occurs, the total length of the drop is of order

LT � r�2c a3 � a
Ca
Cac

� �2
: ð10Þ

Note that along the parabola of Fig. 12, Re ¼ K � Ca2, and Eq. (10) gives

LT � Re: ð11Þ

From Table 8, we see that the ratios of LT are consistent with the scaling of Eq. (11). For instance,
LT;Re¼12=LT;Re¼15 with within 2% of the ratio of the Reynolds numbers 12/15. LT;Re¼15=LT;Re¼20 is
within 5% of the ratio of the Reynolds numbers 15/20.
The scaling for the first daughter drops and neck fragments aid in interpreting the experimental

data of Section 4.6 of Marks (1998), albeit the data are for Stokes flow, for which the daughter
drops are slightly larger than at higher Reynolds numbers. His figure 4.6.1.a, reproduced in Fig.
18 gives five sample histograms of daughter drop sizes, placed in four bins. The 1.0, 0.75, 0.50 and
0.25 bins represent 0:75 < CaD=Cac, 0:50 < CaD=Cac < 0:75, 0:25 < CaD=Cac < 0:50, CaD=Cac <
0:25, respectively. The first daughter drops fall into the 1.0 bin. The neck fragments mostly fall
into the 0.75 bin, while tiny drops fall into the other two bins. Beyond the production of the two
largest daughters, no other drops of this order of magnitude are produced because the rest of the
drops come from the elongated neck. The trend, therefore, is that as the mother capillary number
increases, the volume fraction in the 0.75 bin increases and eventually dominates. The histogram
at Ki ¼ 1:0 denotes the fact that just above criticality, most of the drop goes into the first daughter
drops in the 1.0 bin. Our results at Reynolds number order 10 suggest that just two daughter
drops fall into the 1.0 bin and the neck fragments fall into the 0.75 bin. The moons fall into the
smaller bins. We predict using just this, that when Ki ¼ Ca=Cac ¼ 2, the volume fraction of the

Fig. 18. Reproduction of Fig. 4.6.1.a, p. 150, from Marks (1998). Daughter drop size distributions at several values of

Ki ¼ Ca=Cac. The horizontal axis is daughter drop size Kd ¼ CaD=Cac. Five sample histograms at various values of Ki

are shown. These graphs represent typical histograms and were chosen to show a range of Ki’s.
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neck is 0.86, and when Ki ¼ 6:1, it is 0.995. This is a close prediction of the two histograms in his
figure.
The drop size distribution for large capillary numbers which we predict is observed in the

experimental results of Cristini (2000) for viscosity ratio k ¼ 0:1 and Stokes flow. They show that
the total number of main fragments N scales as

N � ðk=aÞ3; ð12Þ
where k ¼ Ca=Cac and a is the fragment radius/critical radius. The scaling can be easily obtained
from conservation of volume and from the observation that the fragment radius tends to scale
with the critical radius at large enough Ca. In our simulations, a � 0:5, while in the experiments,
a � 0:64. The difference is plausible, considering the difference in Reynolds number and viscosity
ratio.
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